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Transcription factor 4 is a class I basic helix-loop-helix transcription factor regulating
gene expression. Altered TCF4 gene expression has been linked to non-syndromic
intellectual disability, schizophrenia, and a severe neurodevelopmental disorder known
as Pitt-Hopkins syndrome. An understanding of the cell types expressing TCF4 protein
in the mouse brain is needed to help identify potential pathophysiological mechanisms
and targets for therapeutic delivery in TCF4-linked disorders. Here we developed a novel
green fluorescent protein reporter mouse to visualize TCF4-expressing cells throughout
the brain. Using this TCF4 reporter mouse, we observed prominent expression of TCF4
in the pallial region and cerebellum of the postnatal brain. At the cellular level, both
glutamatergic and GABAergic neurons express TCF4 in the cortex and hippocampus,
while only a subset of GABAergic interneurons express TCF4 in the striatum. Among glial
cell groups, TCF4 is present in astrocytes and immature and mature oligodendrocytes.
In the cerebellum, cells in the granule and molecular layer express TCF4. Our findings
greatly extend our knowledge of the spatiotemporal and cell type-specific expression
patterns of TCF4 in the brain, and hence, lay the groundwork to better understand
TCF4-linked neurological disorders. Any effort to restore TCF4 functions through small
molecule or genetic therapies should target these brain regions and cell groups to best
recapitulate TCF4 expression patterns.

Keywords: transcription factor 4, Pitt-Hopkins syndrome, schizophrenia, autism spectrum disorder,
neurodevelopmental disorder, intellectual disability

INTRODUCTION

Transcription factor 4 (TCF4, Gene ID 6925) is a basic helix-loop-helix (bHLH) transcription
factor, acting as both a repressor and activator of gene expression (Massari and Murre, 2000).
The protein’s functional domains include a first activation domain, a nuclear localization signal,
a second activation domain, and a bHLH domain. The bHLH domain consists of a basic region
that directly mediates DNA binding and amphipathic helices that provide a dimerization interface.
TCF4 can form homo- and hetero-dimers with cell type-specific bHLH proteins, which modulate
its function (Murre et al., 1994). The human TCF4 gene can be transcribed from multiple
promoters, and the usage of alternative 5′ exons and splicing produces protein isoforms with
18 different N′-termini and variable functional domains (Sepp et al., 2011). Genomic alterations
that affect TCF4 function or levels increase the risk of neurodevelopmental or psychiatric

Frontiers in Neuroanatomy | www.frontiersin.org 1 July 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2020.00042
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnana.2020.00042
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2020.00042&domain=pdf&date_stamp=2020-07-xx
https://www.frontiersin.org/articles/10.3389/fnana.2020.00042/full
http://loop.frontiersin.org/people/954373/overview
http://loop.frontiersin.org/people/958439/overview
http://loop.frontiersin.org/people/3732/overview
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-14-00042 June 28, 2020 Time: 19:30 # 2

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Q7

Q11

Kim et al. TCF4 Distribution

disorders (Sepp et al., 2012; Bedeschi et al., 2017). For example,
haploinsufficiency of TCF4 is the main pathogenic mechanism
in Pitt-Hopkins syndrome (PTHS), which is characterized by
intellectual disability, sensory processing deficits, anxiety, and
speech and motor delay (Amiel et al., 2007; Zweier et al.,
2007). PTHS is associated with enlarged ventricles, cerebellar
atrophy, and hippocampal and corpus callosum hypoplasia
(Peippo et al., 2006; Amiel et al., 2007; Zweier et al., 2008;
Goodspeed et al., 2018; Zollino et al., 2019), suggesting that
gross brain development is sensitive to dramatic changes in
TCF4 expression and function. More subtle alterations in TCF4
gene expression have been linked to non-syndromic intellectual
disability, schizophrenia, and bipolar diseases (Pickard et al.,
2005; Kharbanda et al., 2016; Maduro et al., 2016; Forrest et al.,
2018; Ma et al., 2018; Mary et al., 2018). These structural and
behavioral phenotypes emphasize the importance of TCF4 gene
regulation for normal brain function.

Mouse models carrying mutations or deletions of the bHLH
region of Tcf4 display many PTHS-like phenotypes, including
memory and learning deficits, anxiety, hyperactivity, and sensory
dysfunction. Perturbations of Tcf4 disrupt synaptic function in
the hippocampus and cortex, likely contributing to impaired
learning and memory (Kennedy et al., 2016; Rannals et al.,
2016; Thaxton et al., 2018). At the cellular level, reduced TCF4
protein levels impair dendritic development, neuronal migration,
and cortical laminar organization (Chen et al., 2016; Li et al.,
2019; Wang et al., 2020). In glial cells, TCF4 loss leads to
delayed differentiation of oligodendrocyte progenitors (Fu et al.,
2009). Thus, evidence from mouse studies implicates TCF4 in a
variety of critical processes in brain development and function,
including progenitor cell differentiation, neuronal migration and
morphogenesis, and synaptic plasticity.

Human TCF4 is expressed in the prosencephalon and the
ventricular zone of the central nervous system during fetal
development, and its expression remains sustained in the adult
forebrain (de Pontual et al., 2009). Similarly, mouse Tcf4 is
prominently expressed in the isocortex and hippocampus during
development and in adulthood (Chen et al., 2016; Jung et al.,
2018). While these studies highlight broad regions in which
TCF4 is particularly active, much less is known regarding the
specific identity of cell types in which TCF4 is expressed. TCF4
expression has been reported in a subset of cortical neurons
(Jung et al., 2018). However, it is not yet characterized which
cortical neurons express TCF4, and whether brain regions outside
the cortex contain TCF4-expressing cells. Moreover, TCF4-
expressing hippocampal cell groups are largely unknown despite
the prominent expression in the hippocampus.

Eventual pharmacological or genetic approaches to treat
PTHS and other TCF4-linked disorders require knowledge of
TCF4 distribution at the resolution of discrete brain areas
and specific cell lineages and types. This is particularly true
for gene therapy strategies that are attempting to address
TCF4 haploinsufficiency in PTHS by normalizing levels of gene
expression. In order to facilitate these therapeutic efforts and
further contextualize roles for TCF4 in brain development, we
developed and validated a novel mouse model incorporating a
Cre-dependent TCF4 green fluorescent protein (GFP) reporter.

Using this line, we track TCF4-expressing brain regions and
cell groups throughout postnatal development, with greater
reliability and resolution than could previously be achieved using
available antibodies (Jung et al., 2018).

MATERIALS AND METHODS

Animals
We generated Tcf4LGSL/+ mice through the University of North
Carolina, Chapel Hill (UNC) Animal Models Core facility. We
utilized CRISPR/Cas9-mediated homologous recombination to
generate Tcf4-LoxP-GFP-Stop-LoxP (Tcf4LGSL) knock-in mice on
the C57BL/6J background. The Tcf4LGSL allele was generated
by inserting a cassette, comprised of a LoxP site, adenovirus
splice acceptor, porcine teschovirus-1 2A (P2A) site, EGFP
coding sequence, 3 copies of SV40 polyadenylation sequence
(Stop), FRT site, and another LoxP site (Figure 1A). This
cassette was inserted into Tcf4 intron 17. The sequence of the
guide RNA (gRNA) was 5′- GTCGTGCCTTACGTAGCTGGG-
3.′ Mouse embryos were injected with a mixture of 400 nM
Cas9 protein, 50 ng/µl in vitro transcribed gRNA, and 20 ng/µl
supercoiled donor plasmid. The donor plasmid was constructed
with 1017 bp 5′ homology arm, the LoxP-GFP-Stop-LoxP
cassette, and 884 bp 3′ homology arm. Potential founder animals
were screened for the presence of the insertion event by 5′ and 3′
polymerase chain reaction (PCR) assays consisting of one primer
outside the targeting vector homology arms and one primer
unique to the insertion event. The 5′ assay primers were Tcf4-
5ScF1 (5′-GCACTTCAGGGATCGCTTA-3′) and AdSA-R2 (5′-
GGGACAGGATAAGTATGACATCATC-3′), which produced
a 1224 bp band. The 3′ assay primers were SV40pA-
F2 (5′-GCTGATCCGGAACCCTTAAGC-3′) and Tcf4-3ScR1
(5′-CCGCCCTAATTGTTCAAAGAG-3′), which produced a
1109 bp band. Two chosen founders were checked for off-target
mutations at 10 predicted off-target sites. No mutations were
detected at the off-target sites screened in two founder animals.
The Tcf4LGSL/+ knock-in mice were genotyped via PCR. The
primer set of Tcf4-5ScF1 and Tcf4-3ScR1 or SV40pA-F2 and Tcf4-
3ScR1 was, respectively, used to amplify the wildtype or LGSL
knock-in allele.

The female Tcf4LGSL/+ mice were mated with heterozygous
males from one of three Cre-expressing lines: Nex-Cre
(Goebbels et al., 2006), which Klaus-Armin Nave generously
provided, Actin-Cre (RRID:IMSR_JAX:019099), and Gad2-Cre
(RRID:IMSR_JAX:010802). All mice were maintained on a
congenic C57BL/6J background. All research procedures using
mice were approved by the Institutional Animal Care and Use
Committee at the UNC and conformed to National Institutes of
Health guidelines.

Western Blotting
Embryonic day 16.5–18.5 brains were dissected in ice-cold
phosphate-buffered saline (PBS, pH = 7.3) and then immediately
frozen with dry ice. Frozen brain samples were homogenized
in glass homogenizers with ice-cold RIPA buffer [50 mM
Tris–HCl, pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.1%
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FIGURE 1 | ValidationQ5 of

Q6

Tcf4-LGSL mice that faithfully report TCF4 expression. A Schematic of the strategy to generate C57BL/6J mice carrying the
LoxP-P2A-GFP-STOP-LoxP cassette upstream of the basic helix-loop- helix region. Adenovirus splicing acceptor is shown by the blue box. B Representative
Western blot for TCF4, GFP, and GAPDH loading control protein in embryonic brain lysates from Tcf4+/+ (WT), Tcf4LGSL/+ (Het), and Tcf4LGSL/LGSL (Homo) mice.
The TCF4 antibody (recognizes mouse TCF4 aa 50–150) is designed to detect a long isoform of TCF4. We detected a TCF4 full length protein (TCF4-FL) band at
approximately 76 kDa that corresponds to the long isoform in WT lysates. A TCF4 truncated protein (TCF4-Trunc.) was detected at approximately 65 kDa in Het
lysates. A band for GFP or GAPDH protein was detected at approximately 26 or 35 kDa, respectively. C Quantification of Western blotting for TCF4-FL and for GFP.
D–F Dual fluorescence ISH for Tcf4 (magenta) and GFP (green) from PFC of P80 WT and Tcf4LGSL/+, and CA1 of Tcf4LGSL/+ mice. Asterisk indicates a cell
expressing only Tcf4, and arrows indicate cells co-expressing Tcf4 and GFP. Insets are higher magnifications. Scale bars = 10 µm. G, H Quantification of
GFP-positive and -negative cells in Tcf4-expressing cells in the PFC and CA1 region (n = 3 mice). Data represent mean ± SEM.
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sodium dodecyl sulfate (SDS), and 0.5% Na deoxycholate]
supplemented with 2 mM EDTA pH 8.0 and a protease inhibitor
cocktail (Sigma, Saint Louis, MO). Tissue homogenates were
cleared by centrifugation at 4◦C for 20 min. Protein samples
were mixed with 4x protein loading buffer (Li-COR, Lincoln,
NE) and 2-mercaptoethanol (Sigma) and incubated in 95◦C
for 5–7 min. They were resolved by SDS-polyacrylamide gel
electrophoresis and transferred to nitrocellulose membranes.
Membranes were blocked for 1 h at room temperature
in Odyssey blocking buffer (Li-COR) prior to incubation
overnight at 4◦C with primary antibodies diluted 1:500
with blocking buffer. Membranes were subsequently washed
repeatedly with PBS (0.1 M Phosphate, 1.5 M NaCl) containing
0.1% Tween-20 (PBSTween) prior to incubation for 1 h at
room temperature with secondary antibodies prepared in the
dilution of 1:5000 in blocking buffer. The following secondary
antibodies were used: donkey anti-mouse 800CW (Li-COR, 926-
32212) or donkey anti-rabbit Alexa 680 (Invitrogen, A10043).
Finally, blots were washed repeatedly in PBSTween followed
by PBS alone prior to imaging with the Odyssey imaging
system (Li-COR).

Tissue Preparation
Postnatal mice were anesthetized with sodium pentobarbital
(60 mg/kg i.p.) before transcranial perfusion with 25 ml
of PBS immediately followed by phosphate-buffered 4%
paraformaldehyde (pH 7.4). Brains were postfixed overnight at
4◦C before 24-h incubations in PBS with 30% sucrose. Brains
were sectioned coronally or sagittally at 40 µm using a freezing
sliding microtome (Thermo Scientific, Kalamazoo, MI). Sections
were stored at −20◦C in a cryopreservative solution (45% PBS,
30% ethylene glycol, and 25% glycerol by volume).

Histology and Immunostaining
For chromogenic staining, sections were rinsed several times
with PBS, and endogenous peroxidases were quenched by
incubating for 5 min in 1.0% H2O2 in MeOH, followed
by PBS rinsing. Sections were washed with PBS containing
0.2% Triton X-100 (PBST) several times. Then sections were
blocked with 5% normal goat serum in PBST (NGST) for
1 h at room temperature. Blocked sections were incubated in
primary antibodies diluted in NGST for 24 h at 4◦C. After
incubation in primary antibodies, sections were rinsed several
times in PBST and incubated for 1 h at room temperature
in biotinylated goat anti-rabbit secondary antibodies (Vector
BA-1000, Burlingame, CA) diluted 1:500 in NGST. Sections
were then rinsed in PBST prior to tertiary amplification
for 1 h with the ABC elite avidin-biotin-peroxidase system
(Vector PK-7100). Further rinsing with PBST preceded a 3-
min incubation at room temperature in 3,3′-diaminobenzidine
(DAB) chromogenic substrate (0.02% DAB and 0.01% H2O2
in PBST) to visualize immune complexes amplified by avidin-
biotin-peroxidase.

For immunofluorescent staining, sections were rinsed
several times with PBS and PBST before blocking with
NGST or 5% bovine serum albumin (BSA) in PBST for
1 h at room temperature. Sections were then incubated

with primary antibodies diluted in NGST or BSA at 4◦C
overnight. The list of primary antibodies used is provided
in Table 1. Sections were rinsed several times with PBST
and then incubated with secondary antibodies for 1 h at
room temperature. The following secondary antibodies from
Invitrogen (Carlsbad, CA) were used at a 1:1000 dilution:
goat anti-mouse Alexa 568 (A11031); goat anti-mouse Alexa
647 (A21240); goat anti-rabbit Alexa 568 (A11011); goat anti-
chicken Alexa 488 (A11039); or donkey anti-goat Alexa 568
(A11057). In all experiments, 4′,6-diamidino-2-phenylindole
(DAPI; Invitrogen D1306) was added during the secondary
antibody incubation at a concentration of 700 ng/ml for
nuclear counterstaining. Brain sections compared within
figures were stained within the same experiment, under
identical conditions.

In situ Hybridization
RNAscope Fluorescent Multiplex Assay, designed to visualize
multiple cellular RNA targets in fresh frozen tissues (Wang et al.,
2012), was used to detect Tcf4 (Cat No. 423691), EGFP (Cat
No. 400281-C2), vGat (Cat No. 319191-C3), and vGlut1 (Cat
No. 416631-C2) in mouse brain (Advanced Cell Diagnostics,
Newark, CA). The target region of the Tcf4 probe is 1120–
2020 bp of mouse Tcf4 mRNA (NM_001083967.1). Brains
were extracted and frozen in dry ice. Sections were taken at
a thickness of 16 µm. Staining procedure was completed to
manufacturer’s specifications.

Imaging and Figure Production
Images of brain sections stained with DAB histochemistry
were obtained with a Nikon Ti2 Eclipse Color and
Widefield Microscope (Nikon, Melville, NY). Images of
brain sections stained by using fluorophore-conjugated
secondary antibodies were obtained with Zeiss LSM 710
Confocal Microscope, equipped with ZEN imaging software
(Zeiss, Jena, Germany). Images compared within the same
figures were taken within the same imaging session using
identical imaging parameters. Images within figure panels
went through identical modification for brightness and
contrast by using Fiji Image J software. Figures were prepared
using Adobe Illustrator software (Adobe Systems, San Jose,
CA, United States).

Data Analysis
Images for in situ hybridization (ISH) colocalization analysis
were captured from consistent coronal section planes across
different mouse brains (PFC, STR: ∼ 1.10 mm; CA1, BLA,
TH: ∼ −2.06 mm; VC: ∼ −2.70 mm from bregma). The
DAPI image from each brain region (265.69 × 265.69 µm) was
converted to 8-bit in black and white, and its threshold was
adjusted using the Huang method built into Fiji software. For
the image with Tcf4 or GFP staining, the ISODATA threshold
method was consistently applied. To identify mean Tcf4 or GFP
fluorescence intensity level for each nucleus (DAPI), we used
CellProfiler software, which is a free open-source software that
allows one to measure and analyze cell images automatically
(Kamentsky et al., 2011).
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TABLE 1 | Primary antibodies used.

Antigen Manufacturer Dilution

APC Millipore (Billerica, MA, United States), mouse monoclonal, clone CC-1, OP80 1:500

Calbindin Santa Cruz (Dallas, TX, United States), goat polyclonal, sc-7691 1:500

ChAT Millipore, goat polyclonal, AB144P 1:1,000

DARPP-32 Millipore, rabbit polyclonal, AB10518 1:1,000

GAPDH Millipore, mouse monoclonal, clone 6C5, MAB374 1:5,000

GFAP Dako (Glostrup, Denmark), rabbit polyclonal, Z0334 1:1,000

GFP Novus (Centennial, CO), rabbit polyclonal, NB600-308 1:1,000

GFP Aves Labs (Tigard, OR), chicken polyclonal, GFP-1020 1:10,000

IBA1 Wako (Osaka, Japan), rabbit polyclonal, 019-19741 1:500

NeuN Millipore, mouse monoclonal, clone A60, MAB377 1:1,000

Olig2 Millipore, rabbit polyclonal, AB9610 1:1,000

PV Swant (Marly, Switzerland), mouse monoclonal, PV235 1:1,000

SOM Peninsula Laboratories (San Carlos, CA), rabbit polyclonal, T-4103 1:1,000

TCF4 Abcam (Cambridge, United Kingdom), rabbit polyclonal, ab130014. Synthetic peptide corresponds to Mouse TCF4 aa 50–150. 1:500 or 1,000

VIP Immunostar (Hudson, WI), rabbit polyclonal, 20077 1:1,000

RESULTS

Validation of Tcf4-LGSL Mouse Model
To investigate the spatiotemporal profile of TCF4-expressing
cells, we engineered mice with a LoxP-GFP-STOP-LoxP (LGSL)
cassette introduced into intron 17 of the Tcf4 allele (Figure 1A).
An adenovirus splicing acceptor was included in the cassette
to avoid alternative splicing of intron 17 (Figure 1A). This
design allowed us to examine TCF4-expressing cells with
high confidence, as GFP can be detected by commercial
antibodies. Moreover, the insertion of a 2A self-cleaving peptide
(P2A) enables GFP molecules to freely diffuse throughout the
cytoplasm, making it possible to track axonal projections from
TCF4-expressing neurons, though at the cost of not being able to
use it to identify the subcellular localization of TCF4. The GFP
and STOP cassette is flanked by LoxP sites, enabling their Cre-
mediated deletion, and in turn, reinstating the capacity to express
full-length, functional TCF4 from the locus.

As predicted from our design, brain lysates from Tcf4+/+

(WT) mice produced a single full-length TCF4 band by Western
blot, whereas lysates from Tcf4LGSL/+ (Het) mice produced both
the full-length and truncated TCF4 protein, and lysates from
Tcf4LGSL/LGSL (Homo) mice produced only a truncated TCF4
band (Figure 1B). GFP was present only in Tcf4LGSL/+ and
Tcf4LGSL/LGSL lysates (Figure 1B). The band intensity of full-
length TCF4 was reduced by approximately half in lysates from
Tcf4LGSL/+ compared to WT mice (Figure 1C: WT: 1.00 ± 0.02,
n = 5; Het: 0.54 ± 0.03, n = 11; Homo: 0.00 ± 0.00, n = 3).
GFP levels were higher in lysates from Tcf4LGSL/LGSL compared
to Tcf4LGSL/+ mice (Figure 1C: WT: 0.00 ± 0.00; n = 5,
Het: 0.36 ± 0.01, n = 11; Homo: 1.00 ± 0.00, n = 3). These
results validated that the LGSL cassette produced GFP and
truncated TCF4 protein.

To verify that GFP faithfully reports TCF4 expression, we
performed dual ISH using probes specific to Tcf4 or GFP
mRNA. GFP signals were detected in cells from adult Tcf4LGSL/+
mice, but absent in cells from WT mice (Figure 1D), proving

the specificity of the GFP probe detection. Tcf4 signals were
observed in both WT and Tcf4LGSL/+ mice (Figures 1E,F).
Quantification of cells expressing both GFP and Tcf4 revealed
an approximate 97% overlap (Figures 1G,H: prefrontal cortex
(PFC): 97.56 ± 0.31 %; CA1: 97.58 ± 0.13 %), as only
2.4 % of Tcf4-expressing cells lacked detectable GFP mRNA
(Figures 1F,H: PFC: 2.44 ± 0.32 %; CA1, 2.42 ± 0.13 %).
These results verify that the GFP expression in Tcf4LGSL/+ mice
faithfully reports Tcf4 expression.

Comparison of GFP Reporter and TCF4
Antibodies
Of commercially available TCF4 antibodies, only one has been
validated for immunostaining using homozygous Tcf4 knock-out
tissues (Jung et al., 2018). We used this antibody to visualize
TCF4-expressing cells in WT brain. We observed weak protein
signals in brain cell nuclei at postnatal day (P) 7 (Figure 2A).
Under identical experimental conditions, we failed to detect
appreciable TCF4 protein signals at P15 and P80 (Figures 2B,C).
TCF4 expression may dwindle to undetectable levels, or cease
altogether, over the course of brain maturation. To distinguish
between these possibilities, we performed ISH for Tcf4 in age-
matched WT brains. We observed comparable numbers of Tcf4-
expressing cells between neonatal and adult brains (Figures 2D–
F), indicating expression of Tcf4 transcript persisted in most
cells across postnatal development, albeit likely at reduced levels.
Thus, failure to immunodetect TCF4 protein in adult brain is due
to the limited sensitivity of the TCF4 antibody, not the absence of
the target protein.

To directly compare sensitivities for detecting TCF4 and
GFP antibodies, we performed double immunohistochemistry in
brain sections of Tcf4LGSL/+ mice, from birth into adulthood.
GFP and TCF4 labeling patterns were similar across postnatal
development, though GFP labeling was of visually greater
intensity than TCF4 labeling (Figures 2G–I). The disparity in
labeling intensity was also apparent at P10 and was even more
pronounced by adulthood when TCF4 labeling outside of the
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FIGURE 2 | GFP reporter enhances sensitivity to detect TCF4 by immunohistochemistry. A–C Immunostaining and (D–F) ISH of TCF4/Tcf4 and DAPI from P7, P15,
and P80 mouse cortex. Immunostaining shows decreased detection of TCF4 protein using TCF4 antibody, whereas ISH shows comparable number of Tcf4
expressing cells during postnatal development. Scale bars = 20 µm. G–I Dual immunostaining of P0, P7, and P80 using TCF4 and GFP antibodies in coronal
sections from Tcf4LGSL/+ mice. Image is taken from the same double-labeled section. Scale bar = 1 mm.

hippocampus was barely detectable (Figures 2H,I). We also
detected GFP labeling within axonal projections (Figure 2G).
These data highlight advantages of the GFP reporter — increased
sensitivity and the capacity to track the axonal projections
of TCF4-expressing neurons—for mapping TCF4 expression
patterns across all postnatal ages.

TCF4 Expression Patterns of the Adult
Mouse Brain
To examine adult patterns of TCF4 expression, we stained for
GFP across the rostral to caudal extent in coronal sections
from Tcf4LGSL/+ mice (Figures 3A–H). We observed the
most prominent GFP labeling intensity in the pallial region,

which contains the olfactory bulb, cortex, and hippocampus
(Figures 3B–G). Cells in the glomerular (gm), external plexiform
(pl), and granule layers (gr) of the olfactory bulb (OLF) were
strongly labeled with GFP (Figure 3A). Throughout the entire
cortex, intense GFP staining was seen in almost all areas
and in every layer (Figures 3B–G,I). Expression was strong
in the hippocampus, especially in the pyramidal cell layer of
Ammon’s horn (Figure 3J), and in the cerebellum, highlighted
by concentrated GFP labeling in the molecular (mo) and granule
cell (gl) layers (Figures 3H,M).

While the entire pallial region and cerebellum stained
intensely for GFP, subsets of other brain regions were lightly
and sparsely labeled for GFP. In the pallial derivatives, cells
in the basolateral amygdala nucleus (BLA) and claustrum
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FIGURE 3 | TCF4 expression patterns of adult mouse brain. A–H DAB immunostaining of GFP (for TCF4) in coronal brain sections of adult Tcf4LGSL/+ mice. I–N
High magnification view of CRX, CA1, CP, TH, and CBX. TCF4-expressing cells are prominently found in CRX, CA1, and CBX. Scale bars = 1 mm and 200 µm for
higher magnification insets. The list of abbreviations used is provided in Table 2.

(CLA) were stained for GFP. In the subpallial derivatives, we
detected GFP-positive cells in the central amygdala nucleus
(CEA) and medial amygdala nucleus (MEA) (Figures 3C–E).
We also noted GFP labeling of cells in the caudoputamen (CP),
nucleus accumbens (ACB), lateral septal nucleus (LS), medial

septal complex (MS), and nucleus of the diagonal band (NDB)
(Figures 3B,C,K), although this labeling was much lighter, and
the stained cell density was much lower than what we observed
in the pallial region. In the hypothalamus, we observed the
highest density of GFP-expressing cells in posterior hypothalamic
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TABLE 2 | Abbreviations.

ACB Nucleus accumbens

BLA Basolateral amygdalar nucleus

CA1 Cornu ammonis1

CA3 Cornu ammonis3

CBX Cerebellum

CC Corpus callosum

CEA Central amygdalar nucleus

CLA Claustrum

CP Caudate putamen

CRX Cortex

CS Superior central nucleus raphe

egl External granule layer of cerebellum

gl Granule layer of cerebellum

gm Glomerular layer of olfactory bulb

gr Granule layer of olfactory bulb

HY Hypothalamus

igl Inner granule layer of cerebellum

LSr Lateral septal nucleus, rostral (rostroventral) part

MB Midbrain

MEA Medial amygdalar nucleus

MH Medial habenula

ml Molecular layer of cerebellum

MM Medial mammillary nucleus

MS Medial septal nucleus

NDB Diagonal band nucleus

OLF Olfactory bulb

PAG Periaqueductal gray

PFC Prefrontal cortex

PG Pontine gray

PIR Piriform area

pl Plexiform layer of olfactory bulb

PRP Nucleus prepositus

SC Superior colliculus

SPV Spinal nucleus of the trigeminal

STR Striatum

TH Thalamus

VC Visual cortex

VNC Vestibular nuclei

ZI Zona incerta

nucleus (PH) (Figures 3D–E). In the diencephalic prosomeres,
the medial habenula (MH) stood out for its strong GFP
labeling intensity (Figure 3D), contrasting sharply with other
thalamic nuclei that were generally devoid of detectable GFP
(Figures 3D,E,L). In the prethalamic structure, we observed GFP-
positive cells in zona incerta (ZI). In the midbrain, GFP labeled
cells in periaqueductal gray (PAG) and superior colliculus (SC)
(Figures 3E–G). In the hindbrain, we observed GFP-expressing
cells in the superior central nucleus raphe (CS), pontine gray
(PG), vestibular nuclei (VNC), nucleus prepositus (PRP), and
spinal nucleus of the trigeminal (SPV) (Figures 3G,H).

The contrast in labeling intensity of GFP detected in the pallial
region along with cerebellum and the rest of the brain suggests
differences in TCF4-expressing cell densities. To compare the
expression across different brain regions, we fluorescently labeled

Tcf4 in adult WT tissues via ISH and quantified Tcf4-containing
cells. We detected Tcf4 signals in all examined brain regions,
including CA1, visual cortex (VC), BLA, PFC, CP, and TH
(Figure 4). Consistent with our qualitative observations of GFP
labeling intensity (Figure 3), the percentage of cells expressing
Tcf4 transcript was dramatically higher in CA1, VC, BLA, and
PFC compared to CP and TH (Figure 4).

TCF4 Expression Patterns of the
Neonatal and Juvenile Mouse Brain
We investigated the spatial dynamics of TCF4 expression
during postnatal brain development by examining GFP reporter
expression at P1, P10, P20, and P60. At P1, the pallial region
stood out with the strongest GFP staining. Other derivatives from
prosencephalon, mesencephalon, and rhombencephalon were
also stained for GFP. Cell densities were lower in these derivatives
than the pallial region. The lowest level of GFP expression
was detected in the thalamus and inferior colliculus. Intensely
labeled axonal projections were unique to the P1 timepoint. Most
notably, some GFP-stained axons were extended from the cortical
neurons into discrete thalamic nuclei. Other GFP-stained cortical
axons were extended to invade the hypothalamus and pons
(Figure 5A). We also detected the cerebral peduncle intensely
stained for GFP. These labeling patterns demonstrate that, at an
early postnatal stage, corticothalamic and subcerebral projection
neurons expressed TCF4. Additionally, axons coursing through
the corpus collosum, fimbria, internal capsule, fornix, and
anterior commissure were labeled strongly for GFP (Figures 5A,
2G). GFP expression remained high in the pallial region
and cerebellum at P10. We also detected GFP-expressing
cells throughout the hypothalamus, midbrain, and hindbrain.
Strikingly, GFP expression level was slightly increased in the
thalamus at this age compared with P1 (Figure 5B). This slight
increase is potentially caused by axonal fibers spreading into
the midline nuclei. A similar pattern of corticothalamic fibers
was reported at this age in transgenic mice that drive GFP in
early cortical preplate and subplate neurons (Jacobs et al., 2007).
At P20, GFP expression level was reduced in the thalamus,
hypothalamus, midbrain, and hindbrain. The pallial region,
cerebellum, and some hindbrain and hypothalamic nuclei were
intensely stained for GFP (Figure 5C). The expression pattern
observed in P20 brain was conserved in P60 brain, although
the overall expression level of P60 brain was slightly decreased
compared with P20 brain. Our data show that high levels of
GFP labeling were persistently detected in the pallial region and
cerebellum in all ages (Figure 5). These data suggest that TCF4
could be involved in early stages of neuronal development across
the entire brain, but as the brain matures, TCF4 function becomes
increasingly restricted to the pallial region and cerebellum.

Glutamatergic and GABAergic Cells,
Astrocytes, and Oligodendrocytes
Express TCF4 in the Prefrontal Cortex
We used the GFP reporter line to characterize the cell type-
specific expression of TCF4 in the PFC. GABAergic and
glutamatergic neurons represent two major neuronal classes that
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FIGURE 4 | Quantification of Tcf4-expressing cells in multiple brain regions of adult WT brain. Representative ISH images of Tcf4 and DAPI and proportionality of
Tcf4-positive (magenta) and -negative (white) cell populations in CA1, VC, BLA, PFC, STR, and TH. Tcf4 mRNA is present at high levels in the CA1, VC, BLA, and
PFC. The total numbers in the pie chart center represent the quantified DAPI cells per brain region. Values represent the mean percentages. n = 3 mice. Scale
bars = 20 µm.

we could more easily distinguish upon reciprocal Cre deletion,
which succeeded in eliminating expression of the GFP reporter
one class at a time. We generated LGSL::Gad2-Cre mice to
delete GFP expression from GABAergic neurons (Taniguchi
et al., 2011). We detected relatively light GFP staining in
putative glutamatergic neurons throughout the cortical layers
(Figure 6A). We also generated LGSL::Nex-Cre mice to delete
GFP selectively from forebrain glutamatergic neurons (Goebbels
et al., 2006). We detected strong residual labeling in GABAergic
cells (Figure 6B). To confirm that Tcf4 expression is ubiquitous
in these neuronal classes, we performed double ISH in adult
WT PFC for Tcf4 in combination with either vGlut1 or vGat,
which encode the vesicular transporters for glutamate and
GABA, respectively. We found almost all vGlut1- and vGat-
expressing cells contained Tcf4 (Figures 6C–H). These findings
suggested that TCF4 may be ubiquitously expressed in cortical
glutamatergic and GABAergic cell populations.

Nearly all cortical GABAergic interneurons belong to one of
three groups defined by the expression of parvalbumin (PV),
somatostatin (SOM), and the ionotropic serotonin receptor
5HT3a (5HT3aR) (Rudy et al., 2011). Each group differs
in its morphological and electrophysiological properties and
plays unique roles in cortical circuit function (DeFelipe, 1993;
Gonchar and Burkhalter, 1997; Markram et al., 2004). To
determine whether TCF4 is expressed in specific GABAergic

interneuron subtypes, we performed coimmunostaining for GFP
and representative subgroup-specific markers in the juvenile
and adult LGSL::Nex-Cre mice. There are currently no suitable
antibodies for staining 5HT3aR, so we chose vasoactive intestinal
peptide (VIP) as an alternative marker, which is expressed by
approximately half of all 5HT3aR-expressing neurons (Lee et al.,
2010; Rudy et al., 2011). We found that nearly all SOM, PV, and
VIP labeled interneurons were copositive with GFP in the PFC
(Figures 6I–K) at P20 and P80, suggesting that TCF4-expressing
GABAergic cells consist of SOM, PV, and VIP interneurons.

Over the course of our study, we observed that a subset of
GFP-stained cells did not stain positive for NeuN (data not
shown), indicating that TCF4 may be expressed in glial cell
populations. We costained for GFP and either the astrocyte
marker glial fibrillary acid protein (GFAP), or the microglia
marker ionized calcium binding adaptor molecule 1 (IBA1),
in LGSL::Nex-Cre mice. GFP/GFAP copositive astrocytes were
present throughout the PFC of both juvenile and adult mice
(Figure 6L). However, GFP-stained glia did not costain for
IBA1 (Figure 6M). Due to the recently established role
for TCF4 in regulating the maturation of oligodendrocyte
progenitors (Phan et al., 2020), we expected that TCF4 would
be expressed in oligodendrocyte lineage cells. Olig2 marks all
stages of oligodendrocyte lineage, and APC (or CC1) marks
the maturational process (Bhat et al., 1996). The majority
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FIGURE 5 | TCF4 expression patterns of the neonatal and juvenile mouse
brain. A–D DAB immunostaining of GFP (for TCF4) in sagittal brain sections of
Tcf4LGSL/+ mice at P1, P10, P20, and P60. A similar staining pattern largely
persists throughout postnatal development. Scale bars = 1 mm.

of Olig2/APC positive cells, reflecting mature, myelinating
oligodendrocytes, stained for GFP in the PFC and corpus
callosum at P20 (Figure 6N). Similarly, a subset of immature
oligodendrocytes, labeled only by Olig2, stained for GFP
(Figure 6N). Our results show that among major glial cell
populations in the brain, astrocytes and both immature and
mature oligodendrocytes express TCF4, while microglia appear
to lack TCF4 expression.

Pyramidal Cells, GABAergic
Interneurons, and Astrocytes Express
TCF4 in the Hippocampus
Tcf4 deficient mice exhibited deficits in the behavioral tasks
that require proper hippocampal functions. Additionally, a
form of hippocampal synaptic plasticity was altered in these

mice (Kennedy et al., 2016; Thaxton et al., 2018). Therefore,
we characterized TCF4-expressing cell types in this brain
region to reveal which cell types might contribute to these
phenotypes. First, we examined glutamatergic and GABAergic
cell populations by staining for GFP in LGSL::Gad2-Cre
and LGSL::Nex-Cre mice. As expected from our ISH data
(CA1, Figure 4), glutamatergic pyramidal cells of the CA1
region exhibited strong GFP labeling (Figure 7A). Moreover,
we detected strong residual labeling in GABAergic cells
across the layers (Figure 7B). The hippocampal GABAergic
inhibitory circuits consist of SOM-, PV-, VIP-, neuropeptide Y-,
calretinin-, and cholecystokinin-expressing interneurons (Pelkey
et al., 2017). We tested whether some of these inhibitory
interneurons expressed TCF4 by performing coimmunostaining
in LGSL::Nex-Cre brain. We found that SOM-, PV- and
VIP-positive neurons stained for GFP at P20 and P80
(Figures 7C–E). GFP staining in LGSL::Nex-Cre mice revealed
clearly identifiable star-shaped cells (rad. layer, Figure 7B).
Our coimmunostaining result showed that GFAP-positive
astrocytes stained for GFP (Figure 7F). But, IBA-positive
microglial cells were devoid of GFP (Figure 7G). Our results
demonstrated that TCF4-expressing hippocampal cell groups
consist of astrocytes, pyramidal cells, and SOM-, PV-, and VIP-
containing interneurons.

SOM and PV Interneurons and
Astrocytes Express TCF4 in the Striatum
The vast majority of striatal neurons signal through GABA
to inhibit their target cells (Koos and Tepper, 1999; Gittis
et al., 2010). Because we observed that only ∼19% of striatal
cells express Tcf4 (STR, Figure 4), we speculated that these
would comprise specific subgroups of GABAergic neurons. Using
double ISH, we detected Tcf4 signals in a subset of vGat-
expressing cells (Figures 8A–C). We subsequently employed
a double immunostaining approach in juvenile and adult
Tcf4LGSL/+ mice to further define TCF4-expressing GABAergic
population. We found that the GFP-labeled cells were not
colocalized with medium spiny neurons (MSNs), marked by
DARPP32 (Figure 8D), indicating that GABAergic MSNs
do not express TCF4. Cholinergic interneurons, marked by
choline acetyltransferase (ChAT), represent another major cell
GABAergic class in the striatum in which GFP was not
expressed (Figure 8E). SOM and PV expression characterizes
other GABAergic interneuron types in the striatum (Munoz-
Manchado et al., 2018). We detected GFP in SOM- and PV-
positive interneurons at P20, and this colocalization persisted in
the adult striatum (Figures 8F,G). Interestingly, a few SOM or
PV positive cells did not stain for GFP, raising the possibility that
TCF4 expression could confer unique functional properties to
subsets of PV and SOM interneurons. We showed earlier in this
study that TCF4 was expressed in astrocytes, but not microglial
cells, in the cortex and hippocampus (Figures 6L,M, 7F,G).
Thus, we asked whether this expression pattern also applied to
the striatum. We detected GFP in GFAP-positive cells, but not
in IBA1-positive cells (Figures 8F,G). Collectively, these data
suggest that TCF4 expression in the striatum is restricted to PV
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FIGURE 6 | Glutamatergic, GABAergic cells, astrocytes, and oligodendrocytes express TCF4 in the PFC. A, B DAB immunostaining of GFP (for TCF4) in coronal
sections of P80 LGSL::Gad2-cre or LGSL::Nex-cre mice where GFP protein is deleted in inhibitory or excitatory neurons, respectively. Both glutamatergic and
GABAergic cells express TCF4. Scale bars = 0.5 mm. C–E, F–H Dual ISH for vGult1 and Tcf4 and for vGat and Tcf4 in P80 WT brain tissue, confirming that Tcf4
mRNA is present in vGlut1- and vGat-expressing cells. Scale bars = 20 µm. I–K Dual immunostaining of interneuron subtype-specific markers, SOM, PV, or VIP, and
GFP (for TCF4) in P20 and P80 LGSL::Nex-cre mice. TCF4 is expressed in nearly all SOM-, PV-, and VIP-positive interneurons (arrows). Asterisk represents rare
interneuron that does not express GFP. Scale bars = 30 µm. L, M: Dual immunostaining of astrocyte marker, GFAP, or microglial marker, IBA1, and GFP (for TCF4) in
P20 and P80 LGSL::Nex-cre mice. GFAP-labeled cells express GFP (arrows), but IBA1-labeled cells do not express GFP (asterisk). Scale bars = 30 or 10 µm for
higher magnification insets. N Triple immunostaining of APC, Olig2, and GFP (for TCF4) in the PFC (top panel) and corpus callosum (bottom panel) of P20
LGSL::Nex-cre mice. TCF4 is expressed in mature (arrow) and immature (double arrow) oligodendrocytes. Scale bars = 20 µm.
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FIGURE 7 | Pyramidal cells, GABAergic interneurons, and astrocytes express TCF4 in the hippocampus. A, B DAB immunostaining of GFP (for TCF4) in the CA1 of
P80 LGSL::Gad2-cre or LGSL::Nex-cre mice. Both pyramidal layer cells and GABAergic cells express TCF4. Scale bars = 0.5 mm. C–E Dual immunostaining of
interneuron subtype-specific markers, SOM, PV, or VIP, and GFP (for TCF4) in P20 and P80 LGSL::Nex-cre mice. TCF4 is expressed nearly all SOM-, PV-, or
VIP-positive interneurons (arrows). F, G Dual immunostaining of GFAP or IBA1, and GFP (for TCF4) in P20 and P80 LGSL::Nex-cre mice. GFAP-labeled cells express
GFP (arrow), but IBA1-labeled cells do not express GFP (asterisks). Scale bars = 30 or 10 µm for higher magnification insets.

and SOM interneurons and astrocytes, but not to medium spiny,
cholinergic neurons, and microglial cells.

TCF4 Is Enriched in the Molecular and
Granule Cell Layer of the Cerebellar
Cortex
We consistently observed strong GFP immunoreactivity in the
cerebellum across postnatal development (Figures 3M, 5). Thus,
we further characterized TCF4 distribution in this structure,
focusing on the molecular, Purkinje cell, and granule cell layers.
At P10, a timepoint of ongoing cerebellar histogenesis (Altman,
1969), we found that GFP was enriched in the extracellular area
of the molecular layer and inner granule layer, but absent in the

external granule layer and Purkinje cell layer (Figure 9A). NeuN
staining clearly marked neurons with a multipolar morphology,
presumably traversing the molecular layer toward the inner
granule layer (Figure 9B). These cells were negative for GFP
(Figures 9A–C), suggesting that migrating granule cells do
not express TCF4. In the inner granule layer, where post-
migratory granule cells undergo maturation, we infrequently
found NeuN-positive cells that costained with GFP (Figures 9A–
C). By adulthood, however, nearly all NeuN-positive neurons
in the granule layer costained for GFP (Figures 9E–G), leading
us to surmise that cerebellar granule cells only upregulate
TCF4 expression as they mature. Regardless of age, GABAergic
Purkinje cell bodies, labeled by calbindin, lacked GFP staining
(Figures 9D,H). Consistent with our GFP immunostaining
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FIGURE 8 | StriatalQ12 interneurons, but not medium spiny neurons, express TCF4. A Representative ISH images for Tcf4 and vGat from adult WT striatum, showing
that specific subtypes of interneurons express Tcf4 (arrows). Scale bar = 20 µm. D–G Dual immunostaining of DARPP32, ChAT, SOM, or PV and GFP (for TCF4) in
P20 and P80 Tcf4LGSL/+ mice. The representative staining images reveal that SOM- and PV-positive subtype interneurons express TCF4 (arrow). Asterisks represent
only GFP-positive neurons. Double arrows represent interneuron subtypes that do not express GFP. Scale bars = 20 µm. H, I Dual immunostaining of GFAP or IBA1,
and GFP (for TCF4) in P20 and P80 Tcf4LGSL/+ mice. GFAP-labeled cells express GFP (arrow), but IBA1-labeled cells do not express GFP (asterisk). Scale bars = 30
or 10 µm for higher magnification insets.
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results, ISH for Tcf4 in adult wildtype cerebellum confirmed that
most granule cells expressed Tcf4, while GABAergic Purkinje
cells did not (Figures 9I–K). We also detected Tcf4-expressing
cells in most GABAergic interneurons of the molecular layer
(Figures 9I–K).

DISCUSSION

It is imperative to understand the cellular distribution of TCF4
during postnatal development in order to guide the delivery of
therapeutics for TCF4-linked disorders. Toward this goal, we
developed a mouse with a TCF4-GFP reporter that conferred
greater sensitivity for detecting TCF4 expression than existing
antibody detection methods (Figure 2). We validated the TCF4-
GFP reporter mouse model by using double in situ labeling
to show that about 98% of Tcf4-containing cells express GFP,
proving the mouse model as a faithful reporter for TCF4
(Figures 1E–H). While the GFP reporter was designed to diffuse
freely through the cytoplasm, and thus is not a marker of TCF4
subcellular localization, the reporter offers the advantage that
it can label dendritic arborizations and axonal projections of
TCF4-expressing neurons (Figures 2G, 5A). To improve our
ability to observe TCF4-expressing cell types, we conditionally
deleted the GFP reporter in a Cre-dependent manner. This
allowed us to more easily observe the remaining GFP-positive
cells with an improved signal to noise ratio (Figures 6A,B,
7A,B). We used these approaches, coupled with double-labeling
immunohistochemistry and in situ hybridization, to characterize
the cell type-specific and spatiotemporal expression of TCF4 in
the postnatal mouse brain.

TCF4 Expression Patterns and Their
Implications in Pathology of
TCF4-Linked Disorders
Common genetic variants in and around TCF4 are associated
with a range of neurodevelopmental and psychiatric disorders.
Rare TCF4 single nucleotide variants have been described in
schizophrenia patients whose symptoms include impairments
of attention, memory, social cognition, and executive functions
(Basmanav et al., 2015; Forrest et al., 2018). TCF4 mutations
have been found in large-scale genotyping studies in patients
with intellectual disability and autism spectrum disorder (ASD)
(Kharbanda et al., 2016; Maduro et al., 2016). Haploinsufficiency
of TCF4 causes PTHS – a rare form of intellectual disability
associated with characteristic facial features and motor and
speech dysfunction (Goodspeed et al., 2018; Zollino et al.,
2019). Collectively, these studies implicate TCF4 in a range of
brain disorders that are commonly associated with cognitive
dysfunction. The prefrontal cortex is linked with a range
of cognition including cognitive control, lower-level sensory
processing, memory, and motor operations (Miller, 2000). The
hippocampus supports learning and memory functions in a
spatiotemporal context (Dupret et al., 2010; Rubin et al., 2014).
The prefrontal cortex and hippocampus are thus suspected
pathophysiological loci for TCF4-linked disorders. TCF4 is
enriched in most cortical and hippocampal cells, including

excitatory and inhibitory neurons, as well as astrocytes, and
oligodendrocytes, in the juvenile and adult mouse brain
(Figures 5–7). These findings in TCF4-expressing cell groups
support the idea that functions of the prefrontal cortex and
hippocampus are particularly susceptible to subtle changes in
TCF4 expression. TCF4 loss is associated with defects in cortical
cell positioning, dendritic spines, and arborizations (Chen et al.,
2016; Li et al., 2019). TCF4 haploinsufficiency results in reduced
hippocampal volume and cortical thickness in mice (Jung et al.,
2018). These structural phenotypes are likely linked to functional
consequences, including abnormal neuronal excitability and
synaptic plasticity in the prefrontal cortex and hippocampus,
which are consistently observed across multiple PTHS mouse
models (Kennedy et al., 2016; Rannals et al., 2016; Thaxton et al.,
2018). These cell physiological defects in turn likely contribute to
the impairments in cognition and memory functions in patients
with TCF4-linked disorders.

Severe motor delay and stereotypic behavior are consistent
phenotypes observed in patients with PTHS (Goodspeed et al.,
2018; Zollino et al., 2019). However, the potential mechanism
underlying motor deficits and stereotypies remains unknown.
The striatum is involved in translating cortical activity into
adaptive motor actions and controlled movement (Kreitzer and
Malenka, 2008). At the circuit levels, some striatal interneurons
receive direct cortical afferents. For example, activity of striatal
PV interneurons, known to inhibit MSNs, are enhanced by
cortical stimulation. Regardless of cortical projections, SOM
interneurons locally target MSNs and ChAT-positive neurons
(Straub et al., 2016). TCF4 is expressed in PV and SOM
interneurons, but not in MSNs and ChAT-positive neurons
(Figure 8), suggesting that TCF4 loss may alter striatal circuit
functions through PV and SOM interneurons. Disruptions
in GABAergic circuits of the striatum have been found in
neuropsychiatric disorders and autism (Maia and Frank, 2011;
Rapanelli et al., 2017; Skene et al., 2018). Further experiments will
be required to determine whether GABAergic circuit dysfunction
occurs with TCF4 loss, and if so, whether it is the direct cause of
motor delay and stereotypic behaviors.

The cerebellum contributes to motor coordination, cognitive
processing and emotional control (Schmahmann and Caplan,
2006). It is structurally and functionally abnormal in patients
diagnosed with ASD and other neurodevelopmental disorders
(Rogers et al., 2013). Cognitive functions are impaired in
individuals with developmental reductions in cerebellar volume.
Also, the degree of volume reduction is correlated with the degree
of cognitive impairment (Steinlin, 2008; Bolduc et al., 2012).
Patients with PTHS display reduced volume of the cerebellum
(Peippo et al., 2006; Whalen et al., 2012), which may contribute
to severity of cognitive and motor impairment. The adult human
cerebellum expresses high levels of TCF4 (Jung et al., 2018).
Similar to the human brain, TCF4 is prominently expressed
in the mouse cerebellum during postnatal development and
in adulthood (Figures 3H, 5). Our data thus suggest that the
cerebellum is a candidate brain region that needs to be evaluated
to determine whether TCF4 regulates cerebellar structure, and
perhaps function. We found that differentiated and migrating
granule cells repress TCF4 expression, while post-migratory
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FIGURE 9 | Cerebellar granule and molecular layer cells, but not Purkinje cells, express TCF4. A–H Triple immunostaining of GFP (for TCF4), NeuN, and Purkinje cell
marker, calbindin, in P20 and P80 Tcf4LGSL/+ mouse cerebellum. The representative images confirm that migrating NeuN-positive granule cells in the molecular layer
(ml) lack TCF4 (double arrows), and post-migratory granule cells in the inner granule layer (igl) express TCF4 (arrows). Purkinje cells do not express TCF4.
egl = External granule layer. I–K Representative ISH images for Tcf4 and DAPI in WT adult cerebellum, showing that Tcf4 mRNA is present in granule and molecular
layer (gl and ml) cell nuclei, but it is absent in Purkinje cell nuclei (dashed line). Scale bars = 30 µm.

mature granule cells upregulate TCF4 expression (Figures 9A–
C,E–G). Our findings indicate that TCF4 is positioned to
modulate maturation of the granule cells after migration. Future
study will need to address whether TCF4 loss or dysfunction
alters cerebellar anatomy and local circuit function, and if so,
whether changes in cerebellar circuit directly cause motor and
cognitive deficits.

Neurons are produced in the proliferative ventricular zone
(VZ) and the subventricular zone (SVZ) of the embryonic
telencephalon during development of the cortex (Bystron et al.,
2008). These neurons migrate along radial glia fibers through
the intermediate zone to form six-layer laminar structures
(Rakic, 1972; Rakic et al., 2009). Differentiation and synapse
formation occur once neurons are properly positioned (Katz
and Shatz, 1996; Bystron et al., 2008; Frank and Tsai, 2009).
Alterations in any of these processes are involved in pathogenesis
of neurodevelopmental disorders such as autism, intellectual
disability, and schizophrenia (Fan et al., 2013; Fang et al., 2014;
Stoner et al., 2014). TCF4 is present in the VZ/SVZ of the dorsal
telencephalon at an early embryonic stage in both humans and
mice (de Pontual et al., 2009; Jung et al., 2018). The mouse

cortex produces TCF4 protein at the highest level during early
embryonic and neonatal development (Chen et al., 2016). Our
postnatal immunostaining study shows that TCF4 is upregulated
in the mouse cortex at birth, but as mice age, it is downregulated
(Figure 5). After birth and through the first 7 to 10 days of
postnatal development, cells undergo migration, differentiation,
and maturation processes. Therefore, TCF4 is well positioned to
influence these critical steps of corticogenesis. TCF4 loss delays
neuronal migration, resulting in a thin cortical upper layer (Li
et al., 2019). Beyond migration, dendritic and synaptic formation
are abnormal in Tcf4 haploinsufficient mice (Li et al., 2019).
These previous and current findings suggest that TCF4 may be
an upstream gene of the molecular network regulating migration
and maturation processes.

Spatial specificity of axonal projections across different brain
regions is important for normal brain development and function
(Abelson et al., 2005; Matsuda and Cepko, 2007; Mortazavi et al.,
2008), and TCF4 could be positioned to affect such projections.
The TCF4 reporter mouse allowed us to visualize projecting
axons, as the GFP reporter was free to diffuse throughout
the cytoplasmic compartment (Figure 1A). The GFP reporter
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revealed corticothalamic projections and what appeared to be
the corticospinal and corticobulbar tracts (Figure 5A). Because
corticothalamic neurons are largely localized in layer 6, and the
corticospinal and corticobulbar tracts are largely localized to
layer 5 (Chen et al., 2005; Jacobs et al., 2007), our data suggest
that TCF4 may be expressed in both layer 5 and 6 projection
neurons, although additional experiments will be required to
directly confirm this. Several studies demonstrated that TCF4
regulates the laminar pattern and structure of the cortex (Chen
et al., 2016; Li et al., 2019), and our findings suggest that
TCF4 may also be critical to the development of corticofugal
projections. To test this possibility, the consequences of TCF4 loss
on axonal projections during embryonic development need to be
thoroughly examined.

Insights Into Genetic Normalization
Strategies to Treat TCF4-Related
Disorders
TCF4 is a major transcription modulator that differentially
controls the expression of hundreds of genes (Forrest et al.,
2013; Hill et al., 2017; Xia et al., 2018). Thus, it is wholly
impracticable to develop therapeutic tools that adjust the
dosage of each impacted gene. Ideally, TCF4-linked disorders
can be treated by normalizing TCF4 gene expression levels.
A slight upregulation of TCF4 rescues learning and memory
phenotypes in adult PTHS mouse model (Kennedy et al., 2016).
Studies from similar neurodevelopmental disorders, including
Rett and Angelman syndrome, show that reinstatement of
affected gene expression can provide therapeutic benefits (Guy
et al., 2007; Silva-Santos et al., 2015; Sinnett et al., 2017).
These convergent lines of evidence support the idea that
TCF4-linked disorders can benefit from normalizing TCF4
levels. Gene therapy using adeno-associated virus (AAV) has
been clinically tested as a potential therapeutic intervention
for genetic disorders (Deverman et al., 2018; Hudry and
Vandenberghe, 2019). In principle, disorders linked to the loss
of TCF4 function should be amenable to correction following
treatment with viral vectors coding for TCF4. Key experimental
parameters requiring AAV-mediated gene therapy strategies
include distribution of viral vector and the age at time of
treatment. TCF4 is distributed in nearly all neurons, astrocytes,
and oligodendrocytes in the forebrain at all ages (Figures 6, 7). In
contrast, only selective cell types express TCF4 in the striatum,
thalamus, midbrain, hindbrain, and cerebellum (Figures 3–5,
8). Optimal design of viral vectors will thus require careful
choice of promoter, capsid, and delivery method to promote
expression in forebrain neurons over other brain regions.
Moreover, microglial cells, medium spiny neurons, ChAT-
positive striatal cells, and Purkinje cells lack TCF4 expression
(Figures 6–9). Thus, a major challenge for successful therapy
is avoiding upregulation of TCF4 in these cell types, as it is
unclear how TCF4 expression in these cells will modify the
transcriptional machinery.

The other critical parameter that must be considered in
treating TCF4-linked disorders is timing of TCF4 expression.
Based on the expression profiling of TCF4 (Figure 5;

Jung et al., 2018), we predict that earlier interventions will
have a larger therapeutic impact on TCF4-linked disorders.
After proliferation and maturation, which occur in the prenatal
and neonatal periods, there is no need to increase the number
of neurons in the brain, except for the hippocampal dentate
gyrus. Therefore, after the critical timepoint of neurogenesis
and synaptogenesis, the brain undergoes limited plastic changes
(Bystron et al., 2008; Budday et al., 2015). Late onset therapies
are unlikely to exert as dramatic a phenotypic improvement
compared to early intervention, yet partial improvement of
some phenotypes in adults or prevention of disease progression
would be significant achievements. Our novel TCF4 conditional
mouse model allows us to reinstate wildtype Tcf4 under its
own promoter and regulatory elements (Figure 1A). Using
this powerful tool, future experiments must be performed to
determine the latest age by which normalizing TCF4 expression
can improve or even rescue PTHS-associated phenotypes.
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